
The main code of IJAYA algorithm:

1. Add the path of object function file, “evaluate_normal_fitness.m”, and defined the

array.

%%%%%%%%%% add the path %%%%%%%%%%%%%%%%%%%%%%%%

addpath('Benchmark_Solar_Cell');

fun = @evaluate_normal_fitness;

FE_jilu=cell(1,3);

x_jilu=cell(30,3);

 %%%

2. Set the PV boundary value of X used the “PV_Xrange.m” file, run times and

corresponding matrix.

%%%%%%%%%%%%%%%% set the parameter%%%%%%%%%%%%%%%%

 PV_Xrange;

 Number = 1;

 runNumber =30 ;

 FE_best=[];

%%%

3. Initialize the population, calculate the fitness of object function and start the iteration

cycle.

%%%%%%%%%%%%%%initialize the population%%%%%%%%%%%%%%%%

 rand('seed', sum(100 * clock));

 tic

 fitcount=0;

 popsize = 30;

 X = repmat(Xmin, popsize, 1) + rand(popsize, D) .* (repmat(Xmax-Xmin,

popsize, 1));

 for i=1:popsize

 val_X(i,:) = fun(X(i,:),func_flag);

 fitcount=fitcount+1;

 FE_best(Number,fitcount) = val_X(i,:);

 end

 FES = popsize;

 maxFES = 50000;

 M_X=rand;

%%%

4. Best and worst fitness value are obtained by ranking fitness value, judging and

selecting update strategy.

%%%%%%%%%%%%%%ranking and judging%%%%%%%%%%%%%%%%%

 while FES < maxFES

 [~,r2] = sort(val_X);

 Best = X(r2(1),:);

 Worst= X(r2(end),:);

 if val_X(r2(end),:)==0

 ww=1;

%%%%%%%%%%%%%%%%self-adaptive weight update%%%%%%%%%%%%%

else

 ww=abs(val_X(r2(1),:)/(val_X(r2(end),:)))^2;

 end

 for i=1:popsize

 if i~=r2(1)

 if rand<rand

 for j=1:D

 Xi(j) = X(i,j) + rand*(Best(j) -abs(X(i,j)))-

ww*rand*(Worst(j) -abs(X(i,j)));

 End

%%%%%%%%%%%experience-based learning update%%%%%%%%%%%%%%%%

 else

 nouse1(1)= randi(popsize);

 while nouse1(1)==i

 nouse1(1)= randi(popsize);

 end

 nouse1(2)= randi(popsize);

 while nouse1(2)==i || nouse1(2)==nouse1(1)

 nouse1(2)= randi(popsize);

 end

 if val_X(nouse1(1),:)<val_X(nouse1(2),:)

 Xi = X(i,:) + rand(1,D).*(X(nouse1(1),:) -X(nouse1(2),:));

 else

 Xi = X(i,:) - rand(1,D).*(X(nouse1(1),:) -X(nouse1(2),:));

 end

 end

%%%%%%%%%%%%%%%chaotic learning method%%%%%%%%%%%%%%%%

 else

 M_X=4*M_X*(1-M_X);

 for k=1:D

 Xi(k)=Best(k)+(2*M_X-1)*rand;

 end

 end

%%%

5. Constraints on boundary values and calculating fitness value

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 Xi = boundConstraint_absorb(Xi, Xmin, Xmax);

 val_Xi = fun(Xi,func_flag);

 FES = FES+1;

 if val_Xi<val_X(i,:)

 val_X(i,:) = val_Xi;

 X(i,:) = Xi;

 end

 fitcount=fitcount+1;

 FE_best(Number,fitcount) = min(val_X);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

6.Determine the optimal value and save it.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 [val_Best,index] = min(val_X);

 Best = X(index(1),:);

 jilu_besty(Number,func_flag)=val_Best;

 x_jilu{Number,func_flag}=Best;

 Number = Number + 1;

 FE_jilu{1,func_flag}=FE_best;

 save jaya88_np30 jilu_besty x_jilu FE_jilu

%%%

The value of jilu_besty is the best value to record the best RMSE for different run times

(Number) and different problems (func_flag).

Paper: Yu K , Liang J J , Qu B Y , et al. Multiple learning backtracking search algorithm

for estimating parameters of photovoltaic models[J]. Applied Energy, 2018, 226.

 Yu K, Liang J J, Qu B Y, et al. Parameters identification of photovoltaic models using an improved
JAYA optimization algorithm[J]. Energy Conversion and Management, 2017, 150: 742-753.

